Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1189, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331906

ABSTRACT

Measles cases have surged pre-COVID-19 and the pandemic has aggravated the problem. Most measles-associated morbidity and mortality arises from destruction of pre-existing immune memory by measles virus (MeV), a paramyxovirus of the morbillivirus genus. Therapeutic measles vaccination lacks efficacy, but little is known about preserving immune memory through antivirals and the effect of respiratory disease history on measles severity. We use a canine distemper virus (CDV)-ferret model as surrogate for measles and employ an orally efficacious paramyxovirus polymerase inhibitor to address these questions. A receptor tropism-intact recombinant CDV with low lethality reveals an 8-day advantage of antiviral treatment versus therapeutic vaccination in maintaining immune memory. Infection of female ferrets with influenza A virus (IAV) A/CA/07/2009 (H1N1) or respiratory syncytial virus (RSV) four weeks pre-CDV causes fatal hemorrhagic pneumonia with lung onslaught by commensal bacteria. RNAseq identifies CDV-induced overexpression of trefoil factor (TFF) peptides in the respiratory tract, which is absent in animals pre-infected with IAV. Severe outcomes of consecutive IAV/CDV infections are mitigated by oral antivirals even when initiated late. These findings validate the morbillivirus immune amnesia hypothesis, define measles treatment paradigms, and identify priming of the TFF axis through prior respiratory infections as risk factor for exacerbated morbillivirus disease.


Subject(s)
Distemper Virus, Canine , Influenza A Virus, H1N1 Subtype , Measles , Animals , Female , Ferrets , Measles/complications , Measles virus/genetics , Distemper Virus, Canine/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
2.
Sci Adv ; 8(25): eabo2236, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35749502

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory infections in infants and the immunocompromised, yet no efficient therapeutic exists. We have identified the AVG class of allosteric inhibitors of RSV RNA synthesis. Here, we demonstrate through biolayer interferometry and in vitro RNA-dependent RNA polymerase (RdRP) assays that AVG compounds bind to the viral polymerase, stalling the polymerase in initiation conformation. Resistance profiling revealed a unique escape pattern, suggesting a discrete docking pose. Affinity mapping using photoreactive AVG analogs identified the interface of polymerase core, capping, and connector domains as a molecular target site. A first-generation lead showed nanomolar potency against RSV in human airway epithelium organoids but lacked in vivo efficacy. Docking pose-informed synthetic optimization generated orally efficacious AVG-388, which showed potent efficacy in the RSV mouse model when administered therapeutically. This study maps a druggable target in the RSV RdRP and establishes clinical potential of the AVG chemotype against RSV disease.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Animals , Humans , Mice , Molecular Conformation , RNA-Dependent RNA Polymerase , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus, Human/genetics
3.
PLoS Pathog ; 17(2): e1009371, 2021 02.
Article in English | MEDLINE | ID: mdl-33621266

ABSTRACT

Morbilliviruses, such as measles virus (MeV) and canine distemper virus (CDV), are highly infectious members of the paramyxovirus family. MeV is responsible for major morbidity and mortality in non-vaccinated populations. ERDRP-0519, a pan-morbillivirus small molecule inhibitor for the treatment of measles, targets the morbillivirus RNA-dependent RNA-polymerase (RdRP) complex and displayed unparalleled oral efficacy against lethal infection of ferrets with CDV, an established surrogate model for human measles. Resistance profiling identified the L subunit of the RdRP, which harbors all enzymatic activity of the polymerase complex, as the molecular target of inhibition. Here, we examined binding characteristics, physical docking site, and the molecular mechanism of action of ERDRP-0519 through label-free biolayer interferometry, photoaffinity cross-linking, and in vitro RdRP assays using purified MeV RdRP complexes and synthetic templates. Results demonstrate that unlike all other mononegavirus small molecule inhibitors identified to date, ERDRP-0519 inhibits all phosphodiester bond formation in both de novo initiation of RNA synthesis at the promoter and RNA elongation by a committed polymerase complex. Photocrosslinking and resistance profiling-informed ligand docking revealed that this unprecedented mechanism of action of ERDRP-0519 is due to simultaneous engagement of the L protein polyribonucleotidyl transferase (PRNTase)-like domain and the flexible intrusion loop by the compound, pharmacologically locking the polymerase in pre-initiation conformation. This study informs selection of ERDRP-0519 as clinical candidate for measles therapy and identifies a previously unrecognized druggable site in mononegavirus L polymerase proteins that can silence all synthesis of viral RNA.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Measles virus/drug effects , Measles/drug therapy , Morpholines/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Chlorocebus aethiops , Measles/metabolism , Measles/virology , Measles virus/enzymology , Mutation , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Vero Cells
4.
Carbohydr Res ; 497: 108151, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32977215

ABSTRACT

Protecting groups are valuable in chemo- and regioselective synthetic manipulations. In particular, they are indispensable in carbohydrate chemistry. Although a wide array of protecting groups are available at the disposal of carbohydrate chemists, their stability and orthogonality make the choice of protecting groups challenging. Another important factor is the migratory aptitude of different protecting groups used in carbohydrate chemistry. Migration of commonly used groups like silyl, acetal and acyl groups under various reaction conditions are discussed. Synthetic application of predicted migrations, alternate protecting groups to avoid migration and conditions favoring and disfavoring migrations are discussed in this review.


Subject(s)
Carbohydrates/chemistry , Chemistry, Organic/methods
5.
Nat Microbiol ; 5(10): 1232-1246, 2020 10.
Article in English | MEDLINE | ID: mdl-32661315

ABSTRACT

Paramyxoviruses such as human parainfluenza virus type-3 (HPIV3) and measles virus (MeV) are a substantial health threat. In a high-throughput screen for inhibitors of HPIV3 (a major cause of acute respiratory infection), we identified GHP-88309-a non-nucleoside inhibitor of viral polymerase activity that possesses unusual broad-spectrum activity against diverse paramyxoviruses including respiroviruses (that is, HPIV1 and HPIV3) and morbilliviruses (that is, MeV). Resistance profiles of distinct target viruses overlapped spatially, revealing a conserved binding site in the central cavity of the viral polymerase (L) protein that was validated by photoaffinity labelling-based target mapping. Mechanistic characterization through viral RNA profiling and in vitro MeV polymerase assays identified a block in the initiation phase of the viral polymerase. GHP-88309 showed nanomolar potency against HPIV3 isolates in well-differentiated human airway organoid cultures, was well tolerated (selectivity index > 7,111) and orally bioavailable, and provided complete protection against lethal infection in a Sendai virus mouse surrogate model of human HPIV3 disease when administered therapeutically 48 h after infection. Recoverees had acquired robust immunoprotection against reinfection, and viral resistance coincided with severe attenuation. This study provides proof of the feasibility of a well-behaved broad-spectrum allosteric antiviral and describes a chemotype with high therapeutic potential that addresses major obstacles of anti-paramyxovirus drug development.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Respirovirus/drug effects , Respirovirus/enzymology , Adaptive Immunity , Administration, Oral , Allosteric Regulation , Animals , Antiviral Agents/administration & dosage , Cell Line , Enzyme Inhibitors/administration & dosage , Humans , Immunohistochemistry , Mice , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Respirovirus/immunology , Structure-Activity Relationship
6.
J Am Chem Soc ; 141(21): 8450-8461, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31059257

ABSTRACT

Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61α (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61α from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61α forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61α provides compelling evidence that Sec61α is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61α is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61α function and to further investigate its potential as a therapeutic target for drug discovery.


Subject(s)
Glycoconjugates/pharmacology , SEC Translocation Channels/antagonists & inhibitors , Binding Sites/drug effects , Glycoconjugates/chemistry , Humans , Molecular Structure , Protein Transport/drug effects , SEC Translocation Channels/metabolism
7.
Eur J Med Chem ; 143: 1208-1253, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29126728

ABSTRACT

Amphiphilicity is one of the desirable features in the process of drug development which improves the biological as well as the pharmacokinetics profile of bioactive molecule. Carbohydrate moieties present in anti-cancer natural products and synthetic molecules influence the amphiphilicity and hence their bioactivity. This review focuses on natural and synthetic amphiphilic anti-cancer glycoconjugates. Different classes of molecules with varying degree of amphiphilicity are covered with discussions on their structure-activity relationship and mechanism of action.


Subject(s)
Antineoplastic Agents/pharmacology , Glycoconjugates/pharmacology , Neoplasms/drug therapy , Surface-Active Agents/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Glycoconjugates/chemistry , Humans , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...